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Abstract 

A new implementation of boundary element method (BEM) by an expanding element 

interpolation method is presented in this paper. The expanding element is achieved by 

collocating virtual nodes along the perimeter of the traditional discontinuous element. 

With the virtual nodes, both continuous and discontinuous fields on the domain 

boundary can be accurately approximated, and the interpolation accuracy increases by 

two orders compared with the original discontinuous element. The boundary integral 

equations are built up for the inner nodes of the traditional discontinuous elements, 

only (taking these nodes as source points), while the virtual nodes are used for 

connecting the shape functions at the source points, thus the size of the final system of 

linear equations will not increase. The expanding element inherits the advantages of 

both the continuous and discontinuous elements while overcomes their disadvantages. 

Successful numerical examples with different boundary conditions have demonstrated 

that our new implementation is very encouraging and promising. 

Keywords: boundary element method (BEM); interpolation method; expanding 

element; 

1. Introduction 

The boundary element method (BEM) has been widely used for solving 

engineering and scientific problems [1-13]. Compared with the finite element method 



(FEM), the BEM is more attractive for its dimension reduction feature and higher 

accuracy. In addition, the trial functions in the FEM formulation must be at least 

C0-continuous, which is not required in the BEM. However, how to take full 

advantages of this point has been a long-standing issue in the BEM community, and 

so far has not achieved an agreement. 

There are two basic ways of implementing the BEM. The first way is to use the 

discontinuous elements. In this implementation, the collocation nodes are located 

inside the elements and the solution obtained is discontinuous at the interfaces 

between elements. The discontinuous elements provide a lot of convenience for 

implementation, including the simplification in the assembly and solution of the 

system equations, reducing the difficulty of mesh generation and easy computation of 

the ‘free’ terms appearing in the integral equations. But the number of degrees of 

freedom increases rapidly and much more CPU time and memory capacity are 

required. The second way is using the continuous elements in which the collocation 

nodes coincide with the geometrical vertices of the element. With the continuous 

elements, the interelement continuity of field variables can be obtained. But it could 

be difficult for the continuous elements to deal with some situations for instance the 

corner problems [14-16]. In addition, the standard continuous elements cannot meet 

requirements of differentiability and continuity at the source point in the 

hypersingular boundary integral equation [17-18]. The continuous and discontinuous 

elements each have their own advantages and disadvantages, and have been 

controversial ever since a long time ago [19-20]. 

To avoid the contradiction between the continuous and discontinuous elements, a 

new expanding element is proposed in this paper. The expanding elements not only 

possess the advantages of discontinuous element but also guarantee the interelement 

continuity. Furthermore, the discontinuous fields on the boundary can also be 

accurately approximated. 

The new element is achieved by collocating virtual nodes along the perimeter of 

the traditional discontinuous element. These virtual nodes are used for connecting the 

source points rather than acting as the source points. The computation of the values of 



the virtual nodes is classified into three cases. (i) When interpolating the known 

boundary variables, the values of the virtual nodes equal the corresponding boundary 

conditions. As a consequence, the boundary conditions are accurately imposed. (ii) 

While interpolating the unknown boundary variables, the values of the virtual nodes 

are determined by all adjacent elements including the virtual nodes. For example, the 

value of the virtual node between two constant elements equals the average value of 

these two elements. Thus the interelement continuity is guaranteed. (iii) For 

interpolating discontinuous boundary variables, two virtual nodes are collocated at a 

vertex shared by two adjacent elements, one virtual node for one element, respectively. 

The values of these two virtual nodes are determined by their corresponding element. 

Using this scheme, the discontinuity of the boundary variables can also be accurately 

captured. In all these cases, the virtual nodes improve the interpolation accuracy; 

meanwhile the size of the final system of linear equations does not increase. 

This paper is organized as follows. Section 2 introduces the expanding element 

interpolation method. In section 3, the new implementation of BEM is described. 

Numerical examples are given in Section 4. The paper ends with conclusions in 

Section 5. 

2. The expanding element interpolation method 

 

Fig. 1. (a) Constant expanding element; (b) Linear expanding element; (b) Quadratic expanding 

element. 

In this section, the expanding element interpolation method is described in detail. 



As shown in Fig. 1, the collocation nodes and the virtual nodes constitute the higher 

order expanding element. For example, the shape functions of the constant expanding 

are 
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where Nv1, Nv2 and Nc denote the shape functions of the virtual nodes and collocation 

node, respectively. 

It can be seen that the interpolation accuracy of the proposed method increases by 

two orders compared with that of the original discontinuous element interpolation 

method. The values of virtual nodes are evaluated by different methods. Thus, the 

accuracy and convergence rate of the expanding element interpolation method are 

discussed in the following three cases. 

2.1 The expanding elements used for interpolating the known boundary variables. 

 

Fig. 2. The values of the virtual nodes equal the corresponding boundary conditions. 

When interpolating the known boundary variables, the values of the virtual nodes 

equal the corresponding boundary conditions as shown in Fig. 2.u1,u2 andu3 in 

this figure represent the boundary conditions. It can be seen that the expanding 

elements become the continuous elements with the interpolation accuracy two orders 

higher than the original discontinuous elements. Therefore, the boundary conditions 

are accurately imposed. 

2.2 The expanding elements used for interpolating the unknown boundary variables. 

 



Fig. 3. The value of the virtual node between two constant expanding elements. 

When interpolating the unknown boundary variables, the values of the virtual 

nodes are determined by all adjacent elements including the virtual nodes. The values 

of the virtual nodes are not independent variables. They depend on the values of the 

collocation nodes by the extrapolation of the original discontinuous elements. The 

extrapolation formulation is 
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where vu  represents the values of the virtual nodes. c
iN  and c

jN  are the shape 

functions of the adjacent discontinuous elements which include the virtual node, 

respectively. c
iu  and c

ju  denote the values of the collocation nodes. 

For example, the value of the virtual node between two constant expanding 

elements equals the average value of these two elements as shown in Fig. 3. With this 

method, the interelement continuity can be guaranteed. To verify the accuracy and 

convergence, the expanding elements are used for interpolating the following 

function. 

4 3 2( ) 3 1,    0 4f x x x x x                         (3) 

The relative errors and the convergence rates are shown in Fig. 4. In the following 

figures, e denotes relative errors and n stands for the number of the collocation nodes. 

Expdconst, ExpdLinear, ExpdQuad, TradLinear, TradQuad and TradCubic are the 

proposed expanding elements and traditional continuous elements interpolation 

methods with different orders, respectively. The relative errors e is defined as 
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where |u|max is the maximum value over N sample points; the superscripts r and s refer 

to the exact and numerical solutions, respectively. 



 

Fig. 4. The relative errors and the convergence rates for the expanding elements and traditional 

continuous elements. 

It can be seen from Fig. 4 that the expanding elements possess almost the same 

convergence rates with the traditional continuous elements. But it is more convenient 

for the expanding elements to implement the BEM. 

2.3 The expanding elements used for interpolating the discontinuous boundary 

variables 

 

Fig. 5. The constant expanding elements for interpolating the discontinuous boundary variables. 

When interpolating the discontinuous boundary variables, two virtual nodes are 

collocated at a vertex shared by two adjacent elements, one virtual node for one 

element, respectively. In order to accurately approximate the discontinuity of the 

boundary variable, the values of these two virtual nodes equal the values of 



corresponding elements, respectively, as shown in Fig. 5. To verify the accuracy and 

convergence, the following piecewise function with jump discontinuity are presented. 
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The numerical results together with the exact solution are shown in Fig. 6. The 

relative errors and the convergence rates are shown in Fig. 7. 

It can be seen from Fig. 6 and Fig. 7 that the discontinuity of boundary variables can 

be approximated accurately and the expanding element interpolation method has high 

rates of convergence. 

 

(a)                                      (b) 

 

    (c) 

Fig. 6. The numerical results together with the exact solution (a) By constant expanding elements; 

(b) By linear expanding elements; (c) By quadratic expanding elements. 



 

Fig. 7. The relative errors and the convergence rates for interpolating discontinuity  

From the above analysis, it can be inferred that the expanding element 

interpolation method has high interpolation accuracy and convergence rates. The 

expanding elements not only guarantee the interelement continuity but also 

approximate the discontinuous boundary variables accurately. 

3. The new implementation of BEM by the expanding element interpolation 

method 

The well-known boundary integral equation (BIE) for the solution of Laplace’s 

equation in a 2D region bounded by   is 
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where   and x  are the source and the field points, respectively. ( )c   is a function 

of the internal angle of the boundary at point  . * ( , )u x  is the fundamental 

solution to Laplace equation and 
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Equation (6) is discretized with the N expanding elements. The discretized 

equations for the BEM can be obtained. 
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where N is a vector containing the shape functions of the expanding elements. ui and 

qi are the values of the collocation and virtual nodes in the ith expanding elements. 

After the source point passes through all the collocation nodes, Equation (8) gives a 

system of linear equations, which can be expressed in a matrix form as 

Hu=Gt                            (9) 

where vectors u and t consist of all nodal potential and normal flux. Matrix H 

contains integrals involving q*, and matrix G contains integrals involving u*.  
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There are n collocation nodes and m virtual nodes. Distinguishing the known and 

unknown boundary variables, Equation (9) can be rewritten as 
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where su , sq  and su , sq  are the known and unknown boundary variables of the 

collocation nodes, respectively. vu , vq  and vu , vq  represent the known and 

unknown boundary variables of the virtual nodes, respectively. 
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And sH , sH , vH , vH , sG , sG , vG , vG  are given by 
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From Equations (14)-(17), one can see that the matrices H and G are no longer 

square matrix since the virtual nodes are not used for the source points. But from 

Equation (2) in Section 2, we can know that uv and qv are not truly independent 

variables. They depend on the values of the corresponding collocation nodes. 
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where N1 and N2 contain the shape functions of the original discontinuous elements,  

which are computed by the methods descript in Section 2. Substituting Equation (18) 

into Equation (11) and rearranging Equation (11) according to the boundary 

conditions, the final system of linear equations can be obtained. 

Ax=f                               (19) 

where 
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Matrix A matrix is a square matrix of order n. x is the vector containing n boundary 

unknowns at the source points, only. f is the known vector on the right-hand side. 

It is interesting to note that, from Equation (19)-(22), the size of the overall system 

of linear equations is just the same as that in the traditional discontinuous element 

implementation. The variables at the virtual nodes do not appear in the overall system 

of equations. This point is the main ingredient of the merit of our method. 

4. Numerical examples 

To verify the accuracy and efficiency of the proposed method, several examples 

with different boundary conditions are presented in this section. In all cases, the 

Laplace equation 

2 0u                                (23) 

is solved. For the purpose of error estimation and convergence studies, Equation (4) is 

used. In all figures, e denotes relative errors and n stands for the number of the 

collocation nodes. Expdconst, ExpdLinear, ExpdQuad, TradLinear, TradQuad and 

TradCubic are the proposed expanding elements and traditional continuous elements 

interpolation methods with different orders, respectively. 

4.1 Example 1 

 

Fig. 8. Dirichlet problem on a circle  

A Dirichlet problem on a circle of radius 3 unit, centered at the origin (see Fig. 8) 

is concerned in this example. The exact solution is 



3 3 2 23 3u x y x y xy                           (24) 

The essential boundary condition is imposed on the whole circle. Numerical 

results of u along the radius (from (0, 0) to (3, 0)) from the expanding elements and 

traditional continues elements interpolation method, together with the exact solution, 

are shown in Fig. 9. To study the convergence of the proposed method, different 

number of collocation node is used for u as shown in Fig. 10. 

From Fig. 9 and Fig. 10, it can be seen that the results for u by the proposed 

method are accurate, and high convergence rates can be obtained. 

 

Fig. 9. u along the radius (from (0, 0) to (3, 0)). 

 



Fig. 10. The relative errors and convergence rates of u along the radius (from (0, 0) to (3, 0)). 

4.2 Example 2 

 

Fig. 11. Mixed problem on a square 

A mixed problem on a 3×3 square as shown in Fig. 11 is presented in the second 

example. The exact solution for this problem is given by 

4 4 2 26u x y x y                             (25) 

The essential boundary condition is imposed on the left and top edges and the 

flux boundary condition is prescribed on the right and bottom edges of the domain. 

The flux boundary condition has a jump discontinuity at the point (3, 0). The 

numerical results of u on the diagonal (from (0, 0) to (3, 3)), together with the exact 

solution are shown in Fig. 12. The relative errors and convergence of u on the right 

and bottom edges are shown in Fig. 13. 



 

Fig. 12. u along the diagonal (from (0, 0) to (3, 3)). 

 

Fig. 13. The relative errors and convergence rates of u on the right and bottom edges of the square 

As illustrated in this example that the discontinuity of q can be accurately 

approximated and the agreement between numerical and exact results of u are 

excellent. Thus, continuous and discontinuous fields on the boundary can be 

accurately approximated by the proposed method. 

4.3 Example 3 



 

Fig. 14. Mixed problem with complex geometry 

A mixed problem with complex geometry is considered in the last example as 

shown in Fig. 14. The exact solution is 

2 2
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                        (26) 

The prescribed u and q values along all boundaries are shown in Fig. 14. The 

numerical results of u on the diagonal (from (-4, 0) to (0, 2)), together with the exact 

solution are shown in Fig. 15. The relative errors and convergence of q along the 

boundaries where the essential boundary condition is imposed are shown in Fig. 16. 

 

Fig. 15. u along the diagonal (from (-4, 0) to (0, 2)). 



 

Fig. 16. The relative errors and convergence rates of q. 

In Fig. 15 and Fig. 16, it can be noted that for the complex geometry, the proposed 

method possess high accuracy and convergence rate again. This shows that the 

expanding element interpolation method is feasible. Furthermore, the implementation 

of BEM by the expanding element is easier than that by the traditional continuous 

elements. 

5. Conclusions 

A new implementation of BEM by the expanding element interpolation method is 

proposed in this paper. The interpolation accuracy and efficiency of the proposed 

elements is higher than that of the traditional discontinuous elements. The expanding 

element inherits the advantages of the discontinuous element, thus the implementation 

of BEM by the expanding element is more convenient than that by the traditional 

continuous element. Both continuous and discontinuous fields on the boundary can be 

accurately approximated by the expanding elements. The numerical examples showed 

that the proposed method possesses satisfactory accuracy and convergence rate 

compared with the traditional continuous element interpolation method. Through 

different collocation of the virtual nodes, the proposed method can be applied to solve 

the discontinuous problems such as contact problems and crack propagation, which is 

planned in near future. 
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	                           (1) 
	where Nv1, Nv2 and Nc denote the shape functions of the virtual nodes and collocation node, respectively. 
	It can be seen that the interpolation accuracy of the proposed method increases by two orders compared with that of the original discontinuous element interpolation method. The values of virtual nodes are evaluated by different methods. Thus, the accuracy and convergence rate of the expanding element interpolation method are discussed in the following three cases. 
	2.1 The expanding elements used for interpolating the known boundary variables. 
	  
	Fig. 2. The values of the virtual nodes equal the corresponding boundary conditions. 
	When interpolating the known boundary variables, the values of the virtual nodes equal the corresponding boundary conditions as shown in Fig. 2.(u1,(u2 and(u3 in this figure represent the boundary conditions. It can be seen that the expanding elements become the continuous elements with the interpolation accuracy two orders higher than the original discontinuous elements. Therefore, the boundary conditions are accurately imposed. 
	2.2 The expanding elements used for interpolating the unknown boundary variables. 
	  
	Fig. 3. The value of the virtual node between two constant expanding elements. 
	When interpolating the unknown boundary variables, the values of the virtual nodes are determined by all adjacent elements including the virtual nodes. The values of the virtual nodes are not independent variables. They depend on the values of the collocation nodes by the extrapolation of the original discontinuous elements. The extrapolation formulation is 
	                        (2) 
	where   represents the values of the virtual nodes.  and   are the shape functions of the adjacent discontinuous elements which include the virtual node, respectively.   and   denote the values of the collocation nodes. 
	For example, the value of the virtual node between two constant expanding elements equals the average value of these two elements as shown in Fig. 3. With this method, the interelement continuity can be guaranteed. To verify the accuracy and convergence, the expanding elements are used for interpolating the following function. 
	                  (3) 
	The relative errors and the convergence rates are shown in Fig. 4. In the following figures, e denotes relative errors and n stands for the number of the collocation nodes. Expdconst, ExpdLinear, ExpdQuad, TradLinear, TradQuad and TradCubic are the proposed expanding elements and traditional continuous elements interpolation methods with different orders, respectively. The relative errors e is defined as 
	                       (4) 
	where |u|max is the maximum value over N sample points; the superscripts r and s refer to the exact and numerical solutions, respectively. 
	  
	Fig. 4. The relative errors and the convergence rates for the expanding elements and traditional continuous elements. 
	It can be seen from Fig. 4 that the expanding elements possess almost the same convergence rates with the traditional continuous elements. But it is more convenient for the expanding elements to implement the BEM. 
	2.3 The expanding elements used for interpolating the discontinuous boundary variables 
	  
	Fig. 5. The constant expanding elements for interpolating the discontinuous boundary variables. 
	When interpolating the discontinuous boundary variables, two virtual nodes are collocated at a vertex shared by two adjacent elements, one virtual node for one element, respectively. In order to accurately approximate the discontinuity of the boundary variable, the values of these two virtual nodes equal the values of corresponding elements, respectively, as shown in Fig. 5. To verify the accuracy and convergence, the following piecewise function with jump discontinuity are presented. 
	                       (5) 
	The numerical results together with the exact solution are shown in Fig. 6. The relative errors and the convergence rates are shown in Fig. 7. 
	It can be seen from Fig. 6 and Fig. 7 that the discontinuity of boundary variables can be approximated accurately and the expanding element interpolation method has high rates of convergence. 
	   
	(a)                                      (b) 
	  
	    (c) 
	Fig. 6. The numerical results together with the exact solution (a) By constant expanding elements; (b) By linear expanding elements; (c) By quadratic expanding elements. 
	  
	Fig. 7. The relative errors and the convergence rates for interpolating discontinuity  
	From the above analysis, it can be inferred that the expanding element interpolation method has high interpolation accuracy and convergence rates. The expanding elements not only guarantee the interelement continuity but also approximate the discontinuous boundary variables accurately. 
	The well-known boundary integral equation (BIE) for the solution of Laplace’s equation in a 2D region bounded by   is 
	            (6) 
	where   and   are the source and the field points, respectively.   is a function of the internal angle of the boundary at point  .   is the fundamental solution to Laplace equation and 
	                           (7) 
	Equation (6) is discretized with the N expanding elements. The discretized equations for the BEM can be obtained. 
	      (8) 
	where N is a vector containing the shape functions of the expanding elements. ui and qi are the values of the collocation and virtual nodes in the ith expanding elements. 
	After the source point passes through all the collocation nodes, Equation (8) gives a system of linear equations, which can be expressed in a matrix form as 
	Hu=Gt                            (9) 
	where vectors u and t consist of all nodal potential and normal flux. Matrix H contains integrals involving q*, and matrix G contains integrals involving u*.  
	                    (10) 
	There are n collocation nodes and m virtual nodes. Distinguishing the known and unknown boundary variables, Equation (9) can be rewritten as 
	         (11) 
	where  ,   and  ,   are the known and unknown boundary variables of the collocation nodes, respectively.  ,   and  ,   represent the known and unknown boundary variables of the virtual nodes, respectively. 
	             (12) 
	             (13) 
	And  ,  ,  ,  ,  ,  ,  ,   are given by 
	           (14) 
	       (15) 
	          (16) 
	      (17) 
	From Equations (14)-(17), one can see that the matrices H and G are no longer square matrix since the virtual nodes are not used for the source points. But from Equation (2) in Section 2, we can know that uv and qv are not truly independent variables. They depend on the values of the corresponding collocation nodes. 
	                            (18) 
	where N1 and N2 contain the shape functions of the original discontinuous elements,  which are computed by the methods descript in Section 2. Substituting Equation (18) into Equation (11) and rearranging Equation (11) according to the boundary conditions, the final system of linear equations can be obtained. 
	Ax=f                               (19) 
	where 
	                   (20) 
	                              (21) 
	                   (22) 
	Matrix A matrix is a square matrix of order n. x is the vector containing n boundary unknowns at the source points, only. f is the known vector on the right-hand side. 
	It is interesting to note that, from Equation (19)-(22), the size of the overall system of linear equations is just the same as that in the traditional discontinuous element implementation. The variables at the virtual nodes do not appear in the overall system of equations. This point is the main ingredient of the merit of our method. 
	To verify the accuracy and efficiency of the proposed method, several examples with different boundary conditions are presented in this section. In all cases, the Laplace equation 
	                               (23) 
	Fig. 8. Dirichlet problem on a circle  
	Fig. 9. u along the radius (from (0, 0) to (3, 0)). 
	Fig. 11. Mixed problem on a square 
	Fig. 12. u along the diagonal (from (0, 0) to (3, 3)). 



